
Perl Module_1 Review

#!/usr/bin/perl
$/ = undef;

• # - Commenting out code (indicating directives)

• ! - Indicates what type of program is running, in our case, a perl script (this would not be necessary
in DOS, if one is using the correct path to the Perl Interpreter and the script.

• Most all perl statements end in semicolon (;)

$scalar = <FILEHANDLE> (the input file is entered into memory) (Angle brackets are Perl syntax)

Scalars (variables for strings and numbers) can hold $count, $file, $defline and there is no
need to declare scalars as in C or C++
Variable interpolation - is used for statements containing variables in double-quotes, which
are substituted by their actual value in Perl run-time.

• $/ (Input record separator) - Is a system variable which when equal to undefined, allows perl not
to continue reading input file after the first line separator (\n)

tr/// operator: tr/old/new

$scalar = ~ tr/old/new/; ($scalar also keeps tracks of number of translations performed)
$newvariable = ($scalar =~ tr/old/new/); (parenthesis to indicate operation taking place first)
$newvariable = ($scalar =~ tr/old//); (which only counts and does not replace)
Examples of \c, \d and \s modifiers:
 $dnaseq = “AATTGGCCTG”;
 $count = ($dnaseq =~ tr/A//c); counts everything apart from A, similarly
 $count = ($dnaseq =~ tr/A/x/c); counts and replaces everything apart from A to x
 $dnaseq =~ tr/A//d; deletes all A’s

\s option shortens the output of the tr/// operation and prints a single character for
every repetitive adjacent occurrence of the same character

s/// operator: s/old/new

$scalar =~ s/(choice1|choice2|choice3…)//; (only substitutes the FIRST occurrence of the
specified term
need to add a ‘g’ modifier to make substitutions global
$scalar =~ s/atg/start/g;

=~ matching operator that tries to look for an expression similar to one specified by the user on the
right hand side of the eq.

print is an in-built Perl function that prints the text argument supplied to it.
print “=” x 70 will print ‘=’ seventy times
printf (type of number) (type of output desired)

floating-point numbers or integer in decimal format
field specifiers for floaters is %f (%.1f prints one digit after decimal)
field specifiers for decimals is %d
eg. Printf "GC content: %.1f%\n", $GC;

Error checking code: die is the syntax to abort script followed by the special variable $! Which prints
out the error message, as the script exists.

chop – removes any last character from an input string whether it is a new-line (\n) or not
chomp – only removes new-line (\n) characters, if present.
 Chomp ($input);
--
Summary of Perl mathematical operators:

Operator Symbol Example

Numerical assignment = $x = 3;

Equality comparision = = $x = = 3;

Not Equal To != $x != 3;

Less than < $x < 3;

Greater than > $x > 3;

Less than or equal to <= $x <= 3;

Greater than or equal to >= $x >= 3;

Addition + $z = $x + $y;

Subtraction - $z = $x - $y;

Multiplication * $z = $x * $y;

Division / $z = $x / $y;

Exponentiation ** $z = $x ** $y;

Modulus (Remainder) % $z = $x % $y;

+= $x += 5; $x = $x +5;

++ $x++; (Increments x by 1)

-= $x -= 5; $x = $x – 5;

*= $x *=5; $x = $x * 5;

/= $x /=5; $x = $x / 5;

%= $x %=5; $x = $x %5;

**= $x **=5 $x = $x ** 5;

Perl Web resources:
Official Perl homepage: http://www.perl.com
Bioperl Project: http://www.bioperl.com/
CPAN: http://www.cpan.org/
The Perl Journal: http://www.sysadminmag.com/tpj/
Perl documentation: http://www.perldoc.com/
The Perl Archive: http://www.perlarchive.com/
Perl Mongers: http://www.perl.org/
Entrez: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi (ftp ncbi.nlm.nih.gov)
Brookhaven National Laboratory: http://www.bnl.gov/
DDBJ: DNA Data Bank of Japan: http://www.ddbj.nig.ac.jp/Welcome-e.html
EMBL: European Molecular Biology Laboratory: http://www.embl-heidelberg.de/
--
Array Variable is declared with the @ type identifier, and array data is declared by enclosing the
values in parenthesis and separating them by commas (it stores a set of scalars). Numericals and strings
within quotes can be stored.
Array (and scalar) cannot have names starting with characters such as dashes, underscores, dots or
numbers

$array[i] = constant (I = index, which, by default, starts from 0, unless we set $[= 1)
@values = ($values[0], $values[1],…)

$file = ‘c:\jobs\science_sept14.txt’; # dos uses back slashes
$file = ‘c:/jobs/science_sept14.txt’; # unix uses back slashes

Array type:
@lines [array of lines in a file to be parsed]
@scores [array of Blast scores]
@file [array holding file contents] or
@ARGV [special variable that holds command line arguments] ie. $scalar = ARGV [0] takes in first
argument and $scalar2 = ARGV [1] takes in the second argument (could be used in place of
GetOpt::Long module.

To copy array: @array1 = @array2;
To create empty array or erase existing array: @array1 = ();

Populating arrays with sequential data using range operator (..):

 @numbers = (1..10);
 @alphabets = (‘a’ .. ‘z’);
 @alphanumeric = (‘a’ .. ‘z’, 1..100);

http://www.perl.com/
http://www.bioperl.com/
http://www.cpan.org/
http://www.sysadminmag.com/tpj/
http://www.perldoc.com/
http://www.perlarchive.com/
http://www.perl.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://www.bnl.gov/
http://www.ddbj.nig.ac.jp/Welcome-e.html
http://www.embl-heidelberg.de/

Quote Word Function qw:

 @enzymes = (“EcoRI”, “BamHI”, “HindIII”); is the same as
 @enzymes = qw(EcoRI BamHI HindIII); #comma separators are not needed
Size of an array:

$size = @array; or Counting array elements with the scalar function –
 $size = scalar(@array);
Accessing the last element in an array:

$array[@array-1]; or with the $#notation
$array[$#@array]; or accessing the last element by negative index
$array[-1];

Adding elements to the end of an array:

 push (@array, “$scalar”); #adds to the end of the existing elements in the array
 unshift (@array, “$scalar”); #adds elements to the beginning of an array
 shift (@array); #removes the first element from an array
 pop (@array); #removes elements from the end of an array
Array Slicing:

@slice = @enzyme [0,1]; #will remove elements 0 & 1 from enzyme array to create a new
array called slice.
@splice = @enzyme [0..2]; #use of ‘..’ range operator
@splice = @enzyme [@range]; #where @range = (0..2); where range is specified as an array
splice ([array to splice], [offset], [length], [new elements]); #where
 offset = starting index from where elements are to be removed
 length = number of elements from the offset number to be removed

list = list of values to replace the removed elements with; elements deleted if this is
left blank

Sorting Arrays:

 @newlist = sort {$a cmp $b} @oldlist; #[$a, $b - internal variables for lexical sort function]
 @newlist = sort @oldlist; #[without the cmp operator as sorting is lexical by default]
 @newlist = sort {$a < = > $b} @oldlist; # [< = > comparison operator for numerical sorting]
 @reverse = reverse (@array); # for reversing a sort
 @reversesort = reverse sort (@enzymes); # combining reverse and sort
Split syntax:

@array = split(/regex/, $scalar); eg of a regex within a function as well!
(A descriptor used in the split() function to process data, itself, does not appear in the saved
records)
split (/delimiter/, $string); # syntax for split function
Another example of split function is:
$string = “gene:helicase”;
($x, $y) = split(/:/, $string); # where $x = gene and $y = helicase

Creating Strings from Arrays:
join() creates a string out of an array where each individual string is joined by the specified
delimiter
$genes = join(“ “, @genes);
The delimiter is specified in quotes in join() while it is specified in // in split(). Since quotes
do not indicate a regex, we cannot use “\s” with join() as we do with split() to indicate single
space delimiters.
We can also use the chop operator to process information in a given array: chop(@array);

--
Regex:
Perl regex’s search for defined patterns and performed operations on them as specified by user
Regex in Perl are enclosed within forward slashes: /regex/ and may contain strings or variables
A matching|binding operator =~ looks for exact match to the specified patter; to perform a reverse
operation, ie when a match is not found – the !~ operator is used instead of the =~.

Syntax for regex:
 $regex =~ /(first) (second) (third)…(nth)/;
 $first = $1; ## $first = ‘first’
 $second = $2; ## $second =’second’ etc. etc.

any two identical characters can be used to specify a delimiter. The only difference is with
delimiters other than /, the pattern matching operator m must be specified. $scalar =~
m!search_term!;

Special Character

+: this operator is used to match one or more preceding characters (greedy operator) eg /ez+/
will match ez, ezz, ezzz, ezzzz and so on and will return only the maximum one is. Ezzzz
The operator ? used in conjuction with the greedy operator + will limit the match to the first
occurrence.
*: limits the matching of the preceding character to zero or more occurrences of the preceding
character. Regex /ez*/ is the same as /ez*?/
?: limits the matching of the preceding character to zero or at most one occurrence of the
preceding character

 \s: matches a single space or [\n\t\r\f]
\S: matches any single non whitespace [is defined as a space, new-line character, tab, carriage
return or a form-feed] or [^\n\t\r\f]
\s+: matches one or more spaces

 \d: matches a single digit same as [0-9]
 \d+: matches one or more digits

to test for the presence of a string or variable in a regex, we place it in parenthesis and place
‘?’ outside. If the string is present zero or one time, then $1 = 0 else $1 = ‘string’.
\D: matches any single non-digit [^0-9]
\w: matches any single word or [_0-9a-zA-Z]
\W: matches any single non-word or [^_0-9a-zA-Z]
[] brackets: specifies a range of characters to match
[0123456789] or [0-9]: matches any single digit
[a-zA-Z]: matches any single upper or lower case letter
[A-Z0-9]: matches any single upper case letter or digit
[0-9_\-]: matches any single digit, underscore or a dash
[^0-9]: carat immediately after the left bracket matches the absence of particular set specified
[A-Za-z0-9]+: will match something like OSJNBa0058E19
Escape sequences: are used to escape out characters such as;), (, *, + etc. et. \(or *
 Use double backslashes to escape a backslash eg. If ($string =~ /\\/) {do something};

Anything enclosed within \Q & \E escape sequences is treated as a regular text
character eg. /\QCa++\E/

Match quantifiers:

 + [matches one or more instance of pattern] +{1, }
* [matches zero or more instance of pattern] *{0, }
? [matches zero or one instance of pattern] ?{0,1}
can be used with any pattern to match (eg ez{3,5} etc)

Pattern Anchors:

^ or \A [matches at beginning of a string] eg. Regex – ($seq =~ s/^\s+//) will remove all
spaces from beginning of string

 $ or \Z [matches at end of string]
 \b [matches at beginning or end of word]
 \B [matches only inside a word]

Metacharacters (pattern modifier operators):

. (dot) matches single character
 .+ (dot plus) matches one or more characters

s (for single) modifier enables Perl to treat expressions that spill over multiple-lines as one
continuous line eg. If ($job =~ /$search_term.+URL:(.+)/s);
i (switch) allows us to include case-insensitive search in a regex
g: enables global substitutions
|: enables matching a list of patterns in ()
m: treats patterns as multiple lines (modifies how ^ & $ behave in regex for multi-line strings)
x: allows the addition of spaces and makes it easy to construct a regex (used with pattern
comments)

e: forces the replacement string in the substitute function to be treated as an expression that is
evaluated before replacement. Eg.
 $string = “10 20 30 40 50”;
 $string =~ s/(\d+)/$& * 10/ge;
 $string becomes: 100 200 300 400 500

Pattern system variables: (when a pattern is matched successfully)
 $& returns the entire matched string
 $+ returns the pattern that the last bracket matched
 $` returns everything before the matched string
 $’ returns everything after the matched string

Conditional matching operators:
 ?=: conditional positive matching (eg. $cds =~ /complement(?=(.+))/

?!: conditional negative matching (eg. /gene(?!=complement)/ will query for pattern
containing ‘gene=’ not followed by ‘complement’

--

Perl Control Modifiers:

General Syntax: modifier (condition) {statement block}

Foreach loop: allows you to access each element of an array in succession.

foreach $element(@array) {do something}; #only code in curly brackets is used for foreach loop

If loop syntax:
if ($scalar =~ /search_term/) {do something;}
If – else syntax:
if (evaluate_condition) {
 if_condition_true_execute_if_block;
 if_condition_false_go_to_else_clause;

}
else {
 execute_else_block;

}

If – elsif syntax:

if (evaluate_condition) {
 if_condition_true_execute_if_block;
 if_condition_false_go_to_elsif_clause;

}
elsif (evaluate_condition) {
 if_condition_true_execute_elsif_block;
 if_condition_false_go_to_next_elsif_clause;
 iterate_over_all_elsif_conditions;

}
If – elsif – else syntax:

if (evaluate_condition) {
 if_condition_true_execute_if_block;
 if_condition_false_go_to_elsif_clause;

}
elsif (evaluate_condition) {
 if_condition_true_execute_elsif_block;
 if_condition_false_go_to_next_elsif_clause;
 if_all_elsif_conditions_false_go_to_else_clause;

}
else {
 execute_else_block;

}

• Unlike if, neither else nor elsif can be used alone!

• The else block executes only if all the preceding if or elsif conditions evaluate to false.

• Whenever else is present in an if statement, it is always specified last. It doesn’t have a conditional
expression associated with it.

Unless Modifier:
Syntax: unless (evaluate_condition) {execute_block;}
Unless is the opposite of if and is executed only if a condition is not met!
Example: die (“Error opening $file: $!\n”) unless (open(IN, $file)); is the same as
 die (“Error opening $file: $!\n”) if (!) (open(IN, $file)); #negation operator

Control operator: next unless – allows us to only search an array element if it match a particular
condition – eg next unless $scalar =~ /$search_term/;

While Modifier:
Syntax: while (condition_is_true) { execute_block;}
Example:
 while ($line = <IN>){
 if ($line =~ /PlyA/) {print “$line\n”;} #can be also written with default variable $_

 while ($line = <IN){
 if ($_ =~ /PlyA/) {print “$line\n”;}

Until Modifier:
Syntax: until (condition_is_false) {execute_block;} #is the opposite of while and executes while the
conditional expression is false; or to rephrase it…
 Up_to_the_time_that (condition_is_false) {execute_block;}
 When (condition_is_true) {stop;}
Eg: until ($input = = $password) {print “Wrong password\n”;}

For Modifier:
Syntax: for (initial state; condition; change_state) {execute_block;} #like while but complex condition
 Initial_state [Initialization of variables]
 Condition [the test condition]
 Change_state [increment/decrement variable]
Note: The incremental statement in a for loop does not have a terminating semi-colon
Example:
for ($gene_number = 1, $exon_number = 1; $gene_number <11; $gene_number++, $exon_number++)
{ execute_block; }

Last, Next and Redo Modifiers:
last allows us to exit out of loops when a required condition is met
next allows us to skip over a iteration when a specific condition is encountered
redo allows us to restart an interation until the condition is met Eg for passwords
--

Lexical or Static scoping of variables:

• The keyword my is a way of initialising variables. This allows the scalar declared by my to be reset
every time it’s assigned a new value through a loop.

• The my variable is private and is visible only in the code block in which it is declared.
Example:
 foreach $line(@lines) {
 my $size;
 $count++;
 @exons = split (/\n/, $line);
 print “$count]\t”;

 foreach $exon (@exon) {
 if ($exon =~ /(Init|Intr|Term|Sngl)\s+(\+|\-)\s+\d+\s+\d+\s+(\d+)/) {
 $size += “$3”;
 } #end if
 } #end foreach

• Here, the value of $size, is not cumulative, because of re-initializing of $size by my!

Dynamic Scoping:

• Is done by using the local keyword to declare variable
--
Modules are packets of code that impart additional functionality to your programs. They have in-built
methods that provide the means to carry out specialized tasks.
Getopt::Long -> enables script to parse command line arguments (uses a file called Getopt/Long.pm on
system

Syntax: use module_name;
Function is GetOptions() or
(GetOptions(“f|filename=s” => \$file)); the f is the flag whose value provided on the
command line is transposed into the $file variable. Flag can be provided as (–f or --filename)

 (GetOptions(“f|filename=s” => \$file)); for passing strings
 (GetOptions(“v|value=i” => \$value)); for passing integers
 (GetOptions(“p|price=f” => \$price)); for passing real number arguments

(GetOptions(“f|filename=s” => \$file, “s|search=s” => \$search_terms)); syntax for multiple
options

A hash is designated with a % symbol and consists of data that are organized as key-value pairs
separated by a delineator. The delineator could be => or a simple comma. GetOptions() is a storing
argument that needs to run in the form of a hash where the flag ‘filename’ is the data key and the value
of the key is \$file.

Getopt::Std -> is the module that preceded getopt std, except here the arguments are bundled together,
instead of being specified individually. The function getopt() creats a global variable identified by the
exact letter the user has hard-coded in the function. The global variables then are $opt_f or $opt_s for
arguments f & s respectively. The program can be run using single letter flags, but not long names.
Syntax for Getopt::Long flags:
 F|flag = s Mandatory string argument
 F|flag : s Optional string argument

F|flag = I Mandatory integer argument
F|flag : I Optional integer argument
F|flag = f Mandatory real number argument
F|flag : f Optional real number argument

LWP::Simple Module: or libwww-perl, is a set of Perl modules that provide methods to access and
retieve information from web pages.
Function get() supplied by the LWP::Simple modules requires only the URL information.
Syntax: $page = get ($url);

 is HTML equivalent of line-breaks (ie. \n)

File::Basename: provides the functions dirname() and basename() to parse the file and the directory
portions of a given path. The function fileparse() can be used to parse file extensions using the regex:
‘\..*’. Examples include:
 $dirname = dirname ($filename);
 $basename = basename ($filename);
 ($filename, $dirname, $extn) = fileparse ($filename, ‘\..*’); where
 ‘\..*’ could be ‘\.bak’ or ‘\.pl’ or ‘\.(pl|bak)’

Cwd Module: provides the cwd function to obtained the current working directory
 use cwd;
 $current_dir = cwd;
--
File I/O:
Syntax for library function open:

open (FILEHANDLE, $scalar); #the argument to specify the FILEHANDLE – actually a file variable
– is written in upper case to readily differentiate it from other file variables used in the script.
Read: open(READ, ‘<filename’); same as
 open(READ, ‘filename’);

Write: open(WRITE, ‘>filename’);

Append: open(APPEND, ‘>>filename’);

Read+Write: open(RW, ‘+<filename’);

• All filehandles are arbitrary!

• Command ‘close’ can be used to close open files: eg close (FILEHANDLE);

File test operators:

Example of an operator: if (-e ‘filename’) {print “filename exists!\n”;}
 If (!(-e ‘filename’)) {open “>filename”;}
Other file test operators are:

-d If filename is a directory

-e If file exists

-s If file is non-empty

-z If file is empty

-r If file is a readable file

-f If file is a plain file

-T If file is a Text file

-w If file is writable

-x If file is executable

-B If file is binary

Accessing files with <>:

There are a number of ways to access the contents of a file. The file input operator (<>) eg:
 while (<IN>) {print “$_\n”;}
The while loop causes the file associated with the IN file handle to be read one line at a time; it
terminates when the end-of-file (EOF) is encountered, at which time <> returns false.

Accessing files with @ARGV variable:
Takes in arguments from the command line and processes them inside script. Eg.
 while ($file = shift @ARGV) { print “$file\n”; }
The name of the program that processes command line arguments is stored in special variable: $0
$#ARGV is used the calculate the number of elements in the array ARGV (or # of command line
arguments)
When combined:
 if($#ARGV < 2) {print “Usage: $0 file_name search-term”;}
or it can be re-written as:

 if($#ARGV < 2) {

 print << “USAGE”;
 $0: Script to search a file for a given key word
 Usage: $0 file_name search_term
 Where:
 file_name : Input file
 search_term : Input key-word

 USAGE
 }
Here the print << “USAGE” prompt causes everything to be printed upto the flag USAGE, if the
condition is met!

Deleting Files: the unlink function is used to delete files in Perl. Syntax: unlink $filename

Opening directories: opendir (DIR, $dir); [DIR is the directory handle] and can be used for error
checking such as: die “Error opening $dir: $!\n” unless opendir(DIR, $dir);

Reading directories: readdir(DIR);

When the entire contents of a directory need to be manipulated, it is convenient to use a while
loop: while(defined($file = readdir(DIR))){…} #takes directory handle as argument and

not pathname.
Create new directory: mkdir ($dir); or to make subdirectory:
 mkdir(“$dir\\$subdir”);

Changing directory: chdir($dir);

Removing directory: rmdir($dir);

Closing directory: closedir(DIR); [#takes directory handle as argument and not pathname]

System function: The above commands can also be run as a system command. This function executes
any statement as if it’s been executed on the command line.
 Moving files: DOS: system(“move c:\\perl\genscan.txt c:\\perl\\genscan”);
 UNIX: system(“mv /home/sequences/genscan.txt /home/genscan”);
 Deleting files: DOS: system(“del c:\\perl\\genscan.txt”);
 UNIX: system(“rm /home/genscan/genscan.txt”);
--

Subroutines:
Subroutine is a portion of code that resides in its own code block which is defined by the { }. They have
their own definition and can be “called in” to execute. They are defined and called with the sub
keyword. A subroutine can also be called in with ampersand (&).
Subroutines are useful for making code more modular and allows re-use of code
Subroutine parameter: constitute a mechanism to pass arguments or values to subroutines. Arguments
passed are seen by subroutine as list variables or values in special variable @_ (contained in the order
in which they are passed). These arguments can be accessed like elements of an array:
 foreach $parameter(@_) {print $parameter;}
 Where $_[0], $_[1], $_[2] is equal to each element.
The special variable can be broken into scalars as such:

($name, $strand, $start, $stop) = @_;
print “$name $start $stop\n”;

--

Other Perl built-in functions:

Index function: returns the position of the first occurrence of SUBSTR in STR at or after POSITION.

 $variable = index(STR, SUBSTR, POSITION) or
 $variable = index(STR, SUBSTR) where it starts searching from the beginning of STR

$[Variable: The subscript for the first character of STR is zero, however, this can be changed by
setting the $[variable.
 $dna = “AAGAATTCCCGAATTC”;
 subscript($[= 0) = 0 1 2 3 4 5…
 subscript($[= 1) = 1 2 3 4 5 6…

Rindex function: returns the position of the LAST occurrence of SUBSTR in STR. If POSITION is
specified, returns the last occurrence at or before that position.

 $[= 1;
 $position = rindex (“aagaattcccgaattc”, “gaattc”);
 print “Position = $position\n”;
 Yields the output = 11

Substring function: extracts a substring out of arg and returns it. To specify an end-point fo rthe
extraction, the LENGTH parameter is added. To replace the extracted string with a flag, a final optional
parameter can be added called the REPLACEMENT.
 $seq = substr(ARG, STARTPOS, LENGTH, REPLACEMENT);

Lc function: returns a copy of the input string in lowercase letters
 $out = lc ($dna);

Lcfirst(arg) function: returns the value of arg with the first character lowercased

Uc function: returns a copy of the input string in upper case

Ucfirst(arg) function: converts first character of string to upper case

length(arg) function: returns the length in characters of the value of the arg. If arg is omitted, returns
length of $_.

Reverse(LIST) function: In array context, returns the LIST in reverse order. In scalar context, it returns
the first element of LIST with bytes reversed
--

